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Low-dimensional chaos in zero-Prandtl-number B@ard—Marangoni convection
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Three-dimensional surface-tension-drivennBed convection at zero Prandtl number is computed in the
smallest possible doubly periodic rectangular domain that is compatible with the hexagonal flow structure at
the linear stability threshold of the quiescent state. Upon increasing the Marangoni number beyond this
threshold, the initially stationary flow becomes quickly time dependent. We investigate the transition to chaos
for the case of a free-slip bottom wall by means of an analysis of the kinetic energy time series. We observe a
period-doubling scenario for the transition to chaos of the energy attractor, intermittent behavior of a compo-
nent of the mean velocity field, three characteristic energy levels, and two frequencies that contain a consid-
erable amount of the power spectral density connected with the kinetic energy time series.
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Most experimental and theoretical works on surface-=o(T,)—YT—T,), whereT, stands for a reference tempera-
tension-driven Beard convection (also called Beard- ture. Usingv/d as the unit for velocityd?/ v as the unit for
Marangoni convection or BMC for shortleal with high-  time, vATy/« as the unit ofé (x denotes the thermal diffu-
Prandtl-number fluid§l,2] of large viscosity showing either sivity) we obtain the dimensionless equations in the case of
stationary or weakly time-dependent flows of small Reynoldszero Prandtl numbePr= v/,
number. BMC in low-Prandtl-number fluidéiquid metals

has received far less attention although surface-tension- vIot+(v-V)v=—Vp+V?, (1)
driven convection of liquid metals, plays an important role in
industrial processes such as crystal grof@h or electron V.v=0, 2
beam evaporatiofi3,4]. In these applications, the Reynolds
number is large and the flow, therefore, time dependent or V26+v,=0, 3

even turbulent due to the strong thermal forcing and the rela-
tively low viscosity. Liquid metals are not transparent andtogether with the conditiongv,/dz+Ma(d6/dx) = dvy/ iz
thus, difficult for experimental investigation. Therefore, nu- +Ma(d60/dy)=v,=d0/9z=0 at z=1 and dv,/diz
merical simulations are commonly used to study geometries dv,/dz=v,= 6=0 atz=0, and with the Marangoni num-
that resemble actual experimental or industrial sef&p/]. berMa=yATyd/(pvk) as the control parameter.
Simulations at low Prandtl numbers for the geometrically The evolution equationél)—(3) are solved by the pseu-
simple Baard configuration have only been performed re-dospectral numerical method of R¢@], which is based on
cently[8,9]. This paper extends the systematic study of low-Fourier series irx andy coordinates and a Chebyshev poly-
Prandtl-number BMC described in R¢@]. Similar to work ~ nomial expansion in the coordinate[12—14. All runs re-
on Rayleigh-Beard convectiofi10], the focus is on the tran- ported below were performed on a Cray T3E parallel com-
sition between convection with regular time dependence anguter with the same set of initial velocity and temperature
convection with chaotic time dependence occurring when thelata (converged state foMa=65). The numerical param-
heating is increased. eters used were as follows: time steg=2x10* 64
We consider a horizontal planar layer of incompressiblex 32 Fourier modes, and 33 Chebyshev polynomials. The
Newtonian fluid heated from below under the assumptions ofotal (single processgrcomputing time amounted to 10 000
a nondeflecting free upper surface, and of a driving of thehours.
convective flow by the surface tension forces only. Neglect- For periodic boundary conditions, the smallest rectangular
ing buoyancy is justified if the layer is sufficiently thin or periodicity domain compatible with the hexagonal pattern
under microgravity conditions. The isothermal bottptd]  has the size ,=4w/k,, Ly=477/(\/§kc). Below we shall
of the layer coincides witlz=0. We choose the layer thick- consider this domain with a wave numbley=1.70 corre-
nessd as the unit of length and denote lhy, andL, the  sponding to the linear instability threshdidia,=57.6 of the
(dimensionless periodicity intervals corresponding to the basic state of pure heat conducti8]. The hexagonal con-
periodicx andy directions. Next we introduce the deviation vection pattern appears subcritically Bta, and persists
0 from the the conductive temperature profile definedTby down to Ma~57.0. ForMa>59.5 it is replaced by de-
=60+ Tpoom— AToz, and prescribe the heat flux density at formed hexagons. The kinetic energy for this state remain
the free surface, i.ed,6=0. The tangential force balance at almost constant up to the onset of time-dependent convection
the free surface requires thav(dv/dz) =V o, wherev de-  through an oscillatory instability @a~63. This new state
notes the velocityp the density, and the kinematic viscos- is characterized by an oscillating deformed hexagon and the
ity. The surface tension decreases with temperaturer as formation and decay of a roll-like structure in the computa-
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tional domain. Figure 1 illustrates this kind of oscillatory
behavior forMa= 73 through several snapshots of the spa-
tial distribution of # on the top free surface=1 (dotted
lines correspond to negativ@. The roll-like structure arises
when the deformed hexagon shrinks and vanishes when the
hexagon expands. Characteristic of this oscillatory state is
that the mean velocity fieldf is zero. The further changes in
the pattern with increasing Marangoni numbers are con-
nected with the excitation of the mean velocity field, which
has the componentsl(z) =(v)xy; V(2)=(vy=)x, With
corresponding total kinetic energies,

EU:fdzUZ(z), Evzf dz\A(z). (4)

The development of the pattern fista>66 is as follows.
First of all by means of a period-doubling bifurcation an
oscillatory state connected to the mean field velocity compo-
nent V(z) arises. ConcernindJ(z), the interval of Ma-
rangoni numbers can be divided in two subintervals with
respect toMa=73.5. Below this valudJ(z) is practically
zero. AboveMa=73.5U(z) increases that leads to increas-
ing Ey . As can be seen from the lower two panels of Fig. 2,
Ey increases slowly up tMa=74 and has an irregular be-
havior. For higheMa we observe intermittent behavior of
U(z) andEy, and at the same time the amplitude Bf
rapidly becomes of the same order as the amplitud&,of
(see the lower right-hand side panel of Fig. By has a
different behaviofsee upper and middle panels of Fig. B
oscillates periodically with increasing amplitude frokha
=66 toMa=70. Then the oscillations become chaaotic, e.g.,
at Ma=72. Above this value the oscillation amplitude de-
creases and the oscillations become again periodidv At
=73 the amplitude of théperiodig oscillations is almost the
same as the amplitude féa=66. The periodically oscil-
lating pattern atMa=73 shown in Fig. 1 drifts in they
direction, which, however, cannot readily be seen from the
snapshots of a single oscillation period. With increasihg
beyond 73 we observe a sharp increase in the oscillation
amplitude up toMa=74 and irregular behavior of the ki-
netic energyEy with time. WhenMa>74 E,, oscillates cha-

FIG. 1. Contour plots of at the free surface of the fluid layer.
Panel(a): hexagons foMa=59. Panel(b): Ma=73, 7=209.82;
Panel(c): Ma=73, r=210.46; Pane(d): Ma=73 r=211.02.
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FIG. 2. Time behavior of the kinetic energy connected to the mean flow velocity compdn@ajtandU(z).
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otically but the amplitude of the oscillations increases slowlyMarangoni numbers about 72 and with the region of the
in comparison with the large increase betwééa=73 and periodic window arounda=73.
Ma=74. The system spends much of its time in vicinity of certain
In summary, the main difference between the chaotidevels of the total kinetic energy. These levels can be seen as
states withMa<73 and chaotic states witlla>73 is that, peaks in the histograms of the corresponding time series. In
in the former case only the mean field velocity componenthe case of a periodic motion the corresponding histogram
V(z) is significantly different from zero wherea; in the Ifatte_r.usually has two peaks per loop, corresponding to the two
case both components of the mean field velocity are signifipgints in which vicinity the attractor trajectory spends much
cantly large. . - _ . ~more time than in the vicinity of the other points. In most
In order to obtain additional information on the behavior c55es these points are around the minimum and maximum
of the system foMa>66 we shall now discuss the proper- ygjyes of the kinetic energgas in the first three panels of
ties of the total kinetic energy of the fluid, Fig. 4). For the discussed system, however, we observe an
additional dominant energy level almost in the middle of the
5) interval between the energy levels near which the phase
point spends much of its time in the phase space. This addi-
tional level can be seen very clearly in the panel kba
where E, , , are the components of the kinetic energy in=73 of Fig. 4 and it exists in a latent form even ldta
direction of the corresponding coordinate axes. The energy 66. WhenMa increases beyond 73 the lowest and the
attractors for different values of the Marangoni number arenighest dominant energy levels lose their unique status and
presented in Fig. 3. For 66Ma< 71 the development of the the histogram looks more like a Gaussian.
attractor follows a period-doubling scenario of the transition Despite the complicated dynamics of the system energy
to chaos. FoiMa=71 and above the attractor is a chaotictwo of the frequencies connected to the energy time series
one (see the panel foMa=72 in Fig. 3. With further in- are more important than the other frequencies. This can be
creasing oM a we observe a window of periodic motion and seen by an analysis of the power spectral density)
beyond this window the energy attractor becomes increas=|H(f)|?+|H(—f)|?, 0=f=<o where the total poweP of
ingly chaotic. the signalh(t) can be expressed by its Fourier transform
The considerable changes in the energy attractor do ndd(f): P=/”_dt/h(t)|?=/"_.df|H(f)|>. We use discrete
lead to a complicated behavior of the mean kinetic energy ofampled data with time interval and the unit for frequency
the system. There is an almost linear increase of the meas the Nyquist critical frequenc§.=1/(2A) that in our case
kinetic energy withMa and the upper panel of the same is 100 (dimensionless unijs The power spectral density is
figure shows that the mean kinetic energy in the direction otoncentrated in the lower region of the power spectrum. Up
the z axis remains almost a constant fraction of the mearto Ma=73, i.e., in the regions of the periodic motion, the
total kinetic energy. There exists about 3% difference befirst chaotization, and the periodic window we have one and
tween the mean values Bf andE, with E, being larger for  the same dominant frequenty=0.0057%. With the begin-
Ma<70. The situation is reversed lita~80. The transition ning of the final chaotization of the energy attractor the
region fromE, to E, being larger coincides with the region dominant frequency shifts slightly to the right to the value
of the chaotization of the energy attractor for the case off ,=0.0077%.. WhenMa increases further the power spec-

EKZBJ dQ(vi+vi+vd) =E,+E,+E,,
2)a Y
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FIG. 4. Characteristic histograms for the total kinetic energy.

tral density disperses but nevertheless upt@= 80, a large
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The cross-correlation functior@,,, C,,, Cy, of E, and
E, point to another difference between the chaotic states
aroundMa=72 and the chaotic states fda>73. Even
when the time is quite advanced the cross correlations be-
tween the kinetic energies for the states arolhal= 72 os-
cillate almost periodically with relatively large amplitude,
whereas, in the case of the final chaotization of the attractor
the behavior of the cross correlations is irregular and their
amplitude tends to zero. We note thatMa =72 the large
amplitude of the oscillations of the cross-correlation function
is a consequence of the strong influence of unstable periodic
orbits on the attractor. With the final chaotization fidra
>74 the influence of such orbits decreases and thus, the
amplitude of the oscillations of the cross-correlation function
decreases, too. Therefore, the cross correlations have the
typical form for chaotic time series fala=78 and larger.

Two important characteristics of the chaotic attractors are
the maximum Lyapunov exponent and the correlation dimen-
sion[15-17. For chaotic states the maximum Lyapunov ex-
ponent must be positive and the correlation dimension must
be greater than 2. Indeed the maximum Lyapunov exponent
has small positive values in the interval of Marangoni num-
bers between 74 and 80. The correlation dimension increases
steadily from 2.09 aMa=74 to 2.25 atMa=80.

In this paper we present the results of a numerical study
of the dynamics of BMC at zero Prandtl number in the basic
rectangular domain containing two perfect hexagons at the
onset of convection. Upon increasing the Marangoni number
Ma we observe a complex picture of oscillating and drifting
hexagons and roll-like structures and a transition to chaos
accompanied by a nonzero mean field velocity field with
componentU(z) exhibiting intermittent behavior around
Ma=75. The kinetic energy attractor follows a period-
doubling scenario of transition to chaos. We find a periodic
window aroundMa=73. The chaotic states belowta=80

amount of power spectral density is still concentrated in there strongly influenced by unstable periodic orbits.
above-mentioned two frequencies and the power spectral We are grateful to the Zentrumiftdochleistungsrechnen
density concentrated &t becomes larger that the power of Dresden University of Technology for access to its parallel

spectral density at,.

computing resources.
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