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Low-dimensional chaos in zero-Prandtl-number Be´nard–Marangoni convection
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Three-dimensional surface-tension-driven Be´nard convection at zero Prandtl number is computed in the
smallest possible doubly periodic rectangular domain that is compatible with the hexagonal flow structure at
the linear stability threshold of the quiescent state. Upon increasing the Marangoni number beyond this
threshold, the initially stationary flow becomes quickly time dependent. We investigate the transition to chaos
for the case of a free-slip bottom wall by means of an analysis of the kinetic energy time series. We observe a
period-doubling scenario for the transition to chaos of the energy attractor, intermittent behavior of a compo-
nent of the mean velocity field, three characteristic energy levels, and two frequencies that contain a consid-
erable amount of the power spectral density connected with the kinetic energy time series.
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Most experimental and theoretical works on surfa
tension-driven Be´nard convection ~also called Be´nard-
Marangoni convection or BMC for short! deal with high-
Prandtl-number fluids@1,2# of large viscosity showing eithe
stationary or weakly time-dependent flows of small Reyno
number. BMC in low-Prandtl-number fluids~liquid metals!
has received far less attention although surface-tens
driven convection of liquid metals, plays an important role
industrial processes such as crystal growth@2# or electron
beam evaporation@3,4#. In these applications, the Reynold
number is large and the flow, therefore, time dependen
even turbulent due to the strong thermal forcing and the r
tively low viscosity. Liquid metals are not transparent a
thus, difficult for experimental investigation. Therefore, n
merical simulations are commonly used to study geomet
that resemble actual experimental or industrial setups@5–7#.
Simulations at low Prandtl numbers for the geometrica
simple Bénard configuration have only been performed
cently @8,9#. This paper extends the systematic study of lo
Prandtl-number BMC described in Ref.@9#. Similar to work
on Rayleigh-Be´nard convection@10#, the focus is on the tran
sition between convection with regular time dependence
convection with chaotic time dependence occurring when
heating is increased.

We consider a horizontal planar layer of incompressi
Newtonian fluid heated from below under the assumption
a nondeflecting free upper surface, and of a driving of
convective flow by the surface tension forces only. Negle
ing buoyancy is justified if the layer is sufficiently thin o
under microgravity conditions. The isothermal bottom@11#
of the layer coincides withz50. We choose the layer thick
nessd as the unit of length and denote byLx and Ly the
~dimensionless! periodicity intervals corresponding to th
periodicx andy directions. Next we introduce the deviatio
u from the the conductive temperature profile defined byT
5u1Tbottom2DT0z, and prescribe the heat flux density
the free surface, i.e.,]zu50. The tangential force balance
the free surface requires thatrn(]v/]z)5“s, wherev de-
notes the velocity,r the density, andn the kinematic viscos-
ity. The surface tension decreases with temperature as
1063-651X/2002/65~3!/037203~4!/$20.00 65 0372
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5s(Tr)2g(T2Tr), whereTr stands for a reference temper
ture. Usingn/d as the unit for velocity,d2/n as the unit for
time, nDT0 /k as the unit ofu (k denotes the thermal diffu
sivity! we obtain the dimensionless equations in the case
zero Prandtl numberPr5n/k,

]v/]t1~v•“ !v52“p1¹2v, ~1!

“•v50, ~2!

¹2u1vz50, ~3!

together with the conditions]vx /]z1Ma(]u/]x)5]vy /]z
1Ma(]u/]y)5vz5]u/]z50 at z51 and ]vx /]z
5]vy/]z5vz5u50 atz50, and with the Marangoni num
ber Ma5gDT0d/(rnk) as the control parameter.

The evolution equations~1!–~3! are solved by the pseu
dospectral numerical method of Ref.@9#, which is based on
Fourier series inx andy coordinates and a Chebyshev pol
nomial expansion in thez coordinate@12–14#. All runs re-
ported below were performed on a Cray T3E parallel co
puter with the same set of initial velocity and temperatu
data ~converged state forMa565). The numerical param
eters used were as follows: time stepDt5231024, 64
332 Fourier modes, and 33 Chebyshev polynomials. T
total ~single processor! computing time amounted to 10 00
hours.

For periodic boundary conditions, the smallest rectangu
periodicity domain compatible with the hexagonal patte
has the sizeLx54p/kc , Ly54p/(A3kc). Below we shall
consider this domain with a wave numberkc51.70 corre-
sponding to the linear instability thresholdMac557.6 of the
basic state of pure heat conduction@8#. The hexagonal con-
vection pattern appears subcritically atMac and persists
down to Ma'57.0. For Ma.59.5 it is replaced by de-
formed hexagons. The kinetic energy for this state rem
almost constant up to the onset of time-dependent convec
through an oscillatory instability atMa'63. This new state
is characterized by an oscillating deformed hexagon and
formation and decay of a roll-like structure in the compu
©2002 The American Physical Society03-1
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FIG. 1. Contour plots ofu at the free surface of the fluid laye
Panel~a!: hexagons forMa559. Panel~b!: Ma573, t5209.82;
Panel~c!: Ma573, t5210.46; Panel~d!: Ma573 t5211.02.
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tional domain. Figure 1 illustrates this kind of oscillato
behavior forMa573 through several snapshots of the sp
tial distribution of u on the top free surfacez51 ~dotted
lines correspond to negativeu). The roll-like structure arises
when the deformed hexagon shrinks and vanishes when
hexagon expands. Characteristic of this oscillatory state
that the mean velocity fieldV is zero. The further changes i
the pattern with increasing Marangoni numbers are c
nected with the excitation of the mean velocity field, whi
has the componentsU(z)5^vx&x,y ; V(z)5^vy5&x,y with
corresponding total kinetic energies,

EU5E dzU2~z!, EV5E dzV2~z!. ~4!

The development of the pattern forMa.66 is as follows.
First of all by means of a period-doubling bifurcation a
oscillatory state connected to the mean field velocity com
nent V(z) arises. ConcerningU(z), the interval of Ma-
rangoni numbers can be divided in two subintervals w
respect toMa573.5. Below this valueU(z) is practically
zero. AboveMa573.5U(z) increases that leads to increa
ing EU . As can be seen from the lower two panels of Fig.
EU increases slowly up toMa574 and has an irregular be
havior. For higherMa we observe intermittent behavior o
U(z) and EU , and at the same time the amplitude ofEU
rapidly becomes of the same order as the amplitude ofEV
~see the lower right-hand side panel of Fig. 2!. EV has a
different behavior~see upper and middle panels of Fig. 2!. It
oscillates periodically with increasing amplitude fromMa
566 to Ma570. Then the oscillations become chaotic, e.
at Ma572. Above this value the oscillation amplitude d
creases and the oscillations become again periodic. AtMa
573 the amplitude of the~periodic! oscillations is almost the
same as the amplitude forMa566. The periodically oscil-
lating pattern atMa573 shown in Fig. 1 drifts in they
direction, which, however, cannot readily be seen from
snapshots of a single oscillation period. With increasingMa
beyond 73 we observe a sharp increase in the oscilla
amplitude up toMa574 and irregular behavior of the ki
netic energyEV with time. WhenMa.74 EV oscillates cha-
FIG. 2. Time behavior of the kinetic energy connected to the mean flow velocity componentsV(z) andU(z).
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FIG. 3. Energy attractors for different value
of the Marangoni number.
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otically but the amplitude of the oscillations increases slow
in comparison with the large increase betweenMa573 and
Ma574.

In summary, the main difference between the chao
states withMa,73 and chaotic states withMa.73 is that,
in the former case only the mean field velocity compon
V(z) is significantly different from zero whereas in the latt
case both components of the mean field velocity are sig
cantly large.

In order to obtain additional information on the behav
of the system forMa.66 we shall now discuss the prope
ties of the total kinetic energy of the fluid,

Ek5
r

2EV
dV~vx

21vy
21vz

2!5Ex1Ey1Ez , ~5!

where Ex,y,z are the components of the kinetic energy
direction of the corresponding coordinate axes. The ene
attractors for different values of the Marangoni number
presented in Fig. 3. For 66,Ma,71 the development of the
attractor follows a period-doubling scenario of the transit
to chaos. ForMa571 and above the attractor is a chao
one ~see the panel forMa572 in Fig. 3!. With further in-
creasing ofMa we observe a window of periodic motion an
beyond this window the energy attractor becomes incre
ingly chaotic.

The considerable changes in the energy attractor do
lead to a complicated behavior of the mean kinetic energ
the system. There is an almost linear increase of the m
kinetic energy withMa and the upper panel of the sam
figure shows that the mean kinetic energy in the direction
the z axis remains almost a constant fraction of the me
total kinetic energy. There exists about 3% difference
tween the mean values ofEx andEy with Ey being larger for
Ma,70. The situation is reversed atMa'80. The transition
region fromEy to Ex being larger coincides with the regio
of the chaotization of the energy attractor for the case
03720
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Marangoni numbers about 72 and with the region of
periodic window aroundMa573.

The system spends much of its time in vicinity of certa
levels of the total kinetic energy. These levels can be see
peaks in the histograms of the corresponding time series
the case of a periodic motion the corresponding histogr
usually has two peaks per loop, corresponding to the
points in which vicinity the attractor trajectory spends mu
more time than in the vicinity of the other points. In mo
cases these points are around the minimum and maxim
values of the kinetic energy~as in the first three panels o
Fig. 4!. For the discussed system, however, we observe
additional dominant energy level almost in the middle of t
interval between the energy levels near which the ph
point spends much of its time in the phase space. This a
tional level can be seen very clearly in the panel forMa
573 of Fig. 4 and it exists in a latent form even atMa
566. When Ma increases beyond 73 the lowest and t
highest dominant energy levels lose their unique status
the histogram looks more like a Gaussian.

Despite the complicated dynamics of the system ene
two of the frequencies connected to the energy time se
are more important than the other frequencies. This can
seen by an analysis of the power spectral densityS( f )
5uH( f )u21uH(2 f )u2, 0< f <` where the total powerP of
the signalh(t) can be expressed by its Fourier transfo
H( f ): P5*2`

` dtuh(t)u25*2`
` d f uH( f )u2. We use discrete

sampled data with time intervalD and the unit for frequency
is the Nyquist critical frequencyf c51/(2D) that in our case
is 100 ~dimensionless units!. The power spectral density i
concentrated in the lower region of the power spectrum.
to Ma573, i.e., in the regions of the periodic motion, th
first chaotization, and the periodic window we have one a
the same dominant frequencyf 150.0057f c . With the begin-
ning of the final chaotization of the energy attractor t
dominant frequency shifts slightly to the right to the val
f 250.0077f c . WhenMa increases further the power spe
3-3
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tral density disperses but nevertheless up toMa580, a large
amount of power spectral density is still concentrated in
above-mentioned two frequencies and the power spe
density concentrated atf 1 becomes larger that the powe
spectral density atf 2.

FIG. 4. Characteristic histograms for the total kinetic energy.
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The cross-correlation functionsCxy , Cxz , Cyz of Ex and
Ey point to another difference between the chaotic sta
aroundMa572 and the chaotic states forMa.73. Even
when the time is quite advanced the cross correlations
tween the kinetic energies for the states aroundMa572 os-
cillate almost periodically with relatively large amplitude
whereas, in the case of the final chaotization of the attra
the behavior of the cross correlations is irregular and th
amplitude tends to zero. We note that atMa572 the large
amplitude of the oscillations of the cross-correlation functi
is a consequence of the strong influence of unstable peri
orbits on the attractor. With the final chaotization forMa
.74 the influence of such orbits decreases and thus,
amplitude of the oscillations of the cross-correlation functi
decreases, too. Therefore, the cross correlations have
typical form for chaotic time series forMa578 and larger.

Two important characteristics of the chaotic attractors
the maximum Lyapunov exponent and the correlation dim
sion @15–17#. For chaotic states the maximum Lyapunov e
ponent must be positive and the correlation dimension m
be greater than 2. Indeed the maximum Lyapunov expon
has small positive values in the interval of Marangoni nu
bers between 74 and 80. The correlation dimension incre
steadily from 2.09 atMa574 to 2.25 atMa580.

In this paper we present the results of a numerical st
of the dynamics of BMC at zero Prandtl number in the ba
rectangular domain containing two perfect hexagons at
onset of convection. Upon increasing the Marangoni num
Ma we observe a complex picture of oscillating and driftin
hexagons and roll-like structures and a transition to ch
accompanied by a nonzero mean field velocity field w
componentU(z) exhibiting intermittent behavior aroun
Ma575. The kinetic energy attractor follows a perio
doubling scenario of transition to chaos. We find a perio
window aroundMa573. The chaotic states belowMa580
are strongly influenced by unstable periodic orbits.

We are grateful to the Zentrum fu¨r Hochleistungsrechnen
of Dresden University of Technology for access to its para
computing resources.
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